

Past DWR Studies and CCTAG Initial Scope of Work

Selected DWR responsibilities that use climate change information

Water Plan

Rich Juricich juricich@water.ca.gov

Water Supply

Francis Chung chung@water.ca.gov

Environmental Impacts

Assessment

Andrew Schwarz aschwarz@water.ca.gov

Flood Management

Mike Anderson manderso@water.ca.gov

Delta

Jamie Anderson jamiea@water.ca.gov

Integrated Water Resources Management

Kamyar Guivetchi kamyarg@water.ca.gov

Climate Change

John Andrew jandrew@water.ca.gov Elissa Lynn elynn@water.ca.gov

DWR Planning Studies

General Planning
Studies

Water Plan

Rich Juricich juricich@water.ca.gov

Project Level Studies

Environmental Impacts

Assessment

Andrew Schwarz aschwarz@water.ca.gov

2010 Report

"Climate Change Characterization and Analysis in California Water Resources Planning Studies"

Abdul Khan and Andrew Schwarz

http://www.water.ca.gov/climatechange/docs/DWR_CCCStudy_FinalReport_Dec23.pdf

	Planning Study Name	Project Analysis/Genera 1 Study		Planning Horizon	Spatial Coverage	Climate Analysis Approach	Number of GCMs Considered
1	CWP Update 2009 - B160	General Study	DWR Study	2050	Statewide	Scenario Analysis	6
2	2006 SWP/CVP Impacts Report	General Study	DWR Study	2050 (mid-century).	Central Valley and SWP/CVP service areas.	Scenario Analysis	2
3	2009 SWP/CVP Impacts Report	General Study	DWR Study	2045 (mid-century); 2085 (end of century).	Central Valley and SWP/CVP service areas.	Scenario Analysis	6
4	SWP Delivery Reliability Report 2009	General Study	DWR Study	2029	Central Valley and SWP service areas.	Scenario Analysis	6
5	Management Response Status Report	General Study	DWR Study	2045	Statewide	Scenario Analysis	6
6	DRMS Phase 1 Report	General Study	DWR Study	50-, 100-, and 200- years from the present.	Central Valley and the Delta.	Scenario Analysis w/ monte carlo sim.	13
7	Monterey Plus FEIR 2010	Project Analysis	DWR Study	2020	Central Valley and SWP service areas.	Relative change	2
8	Salton Sea Ecosystem Restoration Program	Project Analysis	DWR Study	2078	Salton Sea area	Scenario Analysis w/ monte carlo	2
9	Oroville Facilities Relicensing	Project Analysis	DWR Study	2058	Central Valley and SWP service areas.	Qualitative approach.	Not applicable.
10	BDCP and DHCCP Operations and Planning	Project Analysis	Participant	2015; 2025; and 2060.	Central Valley, SWP/CVP service areas.	Ensemble informed approach.	16
11	CVP/SWP OCAP BA	Project Analysis		2025 and 2050.	Central Valley, SWP/CVP service areas.	Scenario Analysis (single scenario)+	16
12	Los Vaqueros Reservoir Expansion EIR/EIS	Project Analysis	Participant	2030	The Delta and the Bay area.	Qualitative Approach	2
13	CVP IRP	Project Analysis	Other Related Efforts	2030, 2060, and 2085.	Central Valley and CVP service areas.	Ensemble informed approach.	16

DWR Climate Change Approaches

Qualitative

Conceptual discussion

Relative Change

Based on general information apply a change factor to variables of concern

Los Vaqueros EIR/S

Monterey Plus PEIR

Scenario Based

Use selected downscaled GCM simulations

CAT Report 2009 Water Plan 2009

Ensemble Approach

Use multiple downscaled GCM simulations grouped into an ensemble(s)

Bay Delta Conservation Plan

CAT = Climate Action Team
GCM = Global Climate Model

DWR Climate Change Analysis Methods

Project	Downscaled GCM/Climate Characterization	Rainfall- Runoff Model	Water Supply Model	Hydrologic Analysis	
2006 Climate Action Team (CAT) Report	4 CAT scenarios	VIC	CalSim	Adjusted Historical	
2009 Climate Action Team (CAT) Report	action Team 12 CAT scenarios		CalSim	Adjusted Historical	
2009 Water Plan	12 CAT scenarios	WEAP (evaluated future water demands under climate change)		Model Generated	
Operation Criteria and Plan (OCAP)	4 downscaled GCMs selected from ensemble	VIC	CalSim	Adjusted Historical	
Bay-Delta Conservation Plan			CalSim	Adjusted Historical	
2013 Water Plan	TBD with CCTAG input	WEAP		?	

All Approaches Follow Similar Steps

Maurer, 2009 as Adapted from Cayan and Knowles, SCRIPPS/USGS, 2003

Secondary Approaches

Sensitivity Analysis

Incrementally change selected variables, e.g. +1 °C, +2 °C, +3°C

CAT Report 2009

Paleoclimate Analysis

Use paleoclimate data (e.g., tree ring, lake sediments) to inform potential range of uncertainty

USBR- Colorado River
Interim Guidelines for
Lower Basin Shortages and
Lakes Powell and Mead

Findings

General:

- A range of approaches used
- Approaches reveal an evolution in sophistication
- More advanced methods for longer planning horizon
 & larger spatial scales
- Trend: to use more quantitative & analytical approaches

Findings

Use of Global Climate Model Data:

- Reliance on data from 112 downscaled DOI/LLNL dataset
- Entire DOI/LNLL data set or a subset used
- GCM projections are used both directly & indirectly
- Regional downscaling of data mostly by BCSD
- Primary climate variables used are: temperature, precipitation, and humidity

DOI/LLNL Archive

http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/

- Downscaling Method
 - Bias Correction Spatial Downscaling
- > 112 total projections
 - o 3 Emissions (B1, A1b, A2)
 - o 16 GCMs
 - Multiple "runs" per Emission-GCM combo
- > Variables...
 - o surface T and P only
- Coverage
 - 0 1950-2099
 - o lower 48 states
- > Resolution
 - o monthly, ~12km

Findings

Planning Horizon:

- Studies reviewed: 15 70 years
- Studies with planning horizon greater than 15 years incorporates climate change analysis

Findings: Analytical Differences

Characterization of Climate Variability:

statistically mapped data onto historical climate

Simulation of Future Hydrology:

Streamflow

Adjusted observed hydrologic sequences

Unadjusted model generated sequences

(b) Temperature and precipitation time series development

Sea Level Rise:

- Not considered in several studies
- 1-foot sea level rise assumption for studies with a planning horizon: 2030 to 2050
- 2-feet sea level rise assumption for studies with a planning horizon: 2085 or longer
- Most estimates based on Rahmstorf (2007)

Data Gaps & Needs Assessment

 No assessment of drought conditions that are more extreme than hydrologic records

- No analysis of groundwater impacts
- No analysis of surface watergroundwater interaction
- No analysis of flood protection projects

The Upshot:

➤ Multiple uses/Multiple approaches

➤ Different analytical methods

➤ Lack of consistency

➤ Variable quality

Here's where you come in!

We Are Looking For:

1st Priority

Detailed recommendations on:

- >climate scenarios appropriate for DWR's planning activities.
- whether climate model outputs should be adjusted with historical data.
- > whether hydrology model projections should be adjusted with historical data

DWR Climate Change Analysis Methods

Project	Downscaled GCM/Climate Characterization	Rainfall- Runoff Model	Water Supply Model	Hydrologic Analysis	
2006 Climate Action Team (CAT) Report	4 CAT scenarios	VIC	CalSim	Adjusted Historical	
2009 Climate Action Team (CAT) Report	action Team 12 CAT scenarios		CalSim	Adjusted Historical	
2009 Water Plan	12 CAT scenarios	WEAP (evaluated future water demands under climate change)		Model Generated	
Operation Criteria and Plan (OCAP)	4 downscaled GCMs selected from ensemble	VIC	CalSim	Adjusted Historical	
Bay-Delta Conservation Plan			CalSim	Adjusted Historical	
2013 Water Plan	TBD with CCTAG input	WEAP		?	

DWR Planning Studies

General Planning Studies

(high level, informational)

Project Level Studies

(detailed, decision documents)

We Are Looking For:

2nd Priority

- Extreme climate change scenarios that represent very challenging scenarios of potential climate changes (Stress-test)
- Interim guidance on projecting and modeling extreme weather events that cause flooding.

Looking Forward

- DWR has an internal workgroup developing guidance on the use of climate change simulations and analytical approaches
 - >Internal guidance
 - > Web portal development to share analysis and data sets